
Where we’ve been Where we are Where we’re going Closing remarks

Towards Petascale Simulation and Visualization of
Devastating Tornadic Supercell Thunderstorms

Leigh Orf1 Robert Wilhelmson2,3 Roberto Sisneros3

Louis Wicker4

1Central Michigan University
2University of Illinois

3NCSA
3National Severe Storms Laboratory

May 12, 2014



Where we’ve been Where we are Where we’re going Closing remarks

Outline

1 Where we’ve been
The scientific problem
The scientific / computational approach
A successful simulation

2 Where we are
May 24, 2011 EF5 Tornado
Visualization of the EF5 producing supercell
Issues with VisIt raycasting
Animations

3 Where we’re going
Higher resolution, friction, precipitation centrifuging

4 Closing remarks



Where we’ve been Where we are Where we’re going Closing remarks

Understanding the most devastating tornadoes

• The strongest, longest-lived tornadoes (long-track EF5)
are the least common, but produce the most devastating
damage and significant loss of life

• There is a lack of published research involving the
simulation of such tornadoes embedded within their parent
storm

• We aim to simulate supercells where the entire life cycle
(genesis, maintenance, decay) of many long-track EF5
tornadoes occurs

• This is the first step in providing better forecasts of such
events



Where we’ve been Where we are Where we’re going Closing remarks

Understanding the most devastating tornadoes

• The strongest, longest-lived tornadoes (long-track EF5)
are the least common, but produce the most devastating
damage and significant loss of life

• There is a lack of published research involving the
simulation of such tornadoes embedded within their parent
storm

• We aim to simulate supercells where the entire life cycle
(genesis, maintenance, decay) of many long-track EF5
tornadoes occurs

• This is the first step in providing better forecasts of such
events



Where we’ve been Where we are Where we’re going Closing remarks

Understanding the most devastating tornadoes

• The strongest, longest-lived tornadoes (long-track EF5)
are the least common, but produce the most devastating
damage and significant loss of life

• There is a lack of published research involving the
simulation of such tornadoes embedded within their parent
storm

• We aim to simulate supercells where the entire life cycle
(genesis, maintenance, decay) of many long-track EF5
tornadoes occurs

• This is the first step in providing better forecasts of such
events



Where we’ve been Where we are Where we’re going Closing remarks

Understanding the most devastating tornadoes

• The strongest, longest-lived tornadoes (long-track EF5)
are the least common, but produce the most devastating
damage and significant loss of life

• There is a lack of published research involving the
simulation of such tornadoes embedded within their parent
storm

• We aim to simulate supercells where the entire life cycle
(genesis, maintenance, decay) of many long-track EF5
tornadoes occurs

• This is the first step in providing better forecasts of such
events



Where we’ve been Where we are Where we’re going Closing remarks

The scientific approach

• CM1 Cloud model (written by George Bryan at NCAR)
chosen as model due to its ability to scale well to
massively parallel architectures

• Getting the “storm we want” to form proved difficult.

Experimented with different:
• Atmospheric environments
• Mesh geometries/resolution
• Surface treatments
• Microphysics parameterizations
• Turbulence parameterizations
• Cloud initializations approaches

• As with the real atmosphere, most simulated supercells do
not produce long-track EF5 tornadoes



Where we’ve been Where we are Where we’re going Closing remarks

The scientific approach

• CM1 Cloud model (written by George Bryan at NCAR)
chosen as model due to its ability to scale well to
massively parallel architectures

• Getting the “storm we want” to form proved difficult.
Experimented with different:

• Atmospheric environments
• Mesh geometries/resolution
• Surface treatments
• Microphysics parameterizations
• Turbulence parameterizations
• Cloud initializations approaches

• As with the real atmosphere, most simulated supercells do
not produce long-track EF5 tornadoes



Where we’ve been Where we are Where we’re going Closing remarks

The scientific approach

• CM1 Cloud model (written by George Bryan at NCAR)
chosen as model due to its ability to scale well to
massively parallel architectures

• Getting the “storm we want” to form proved difficult.
Experimented with different:

• Atmospheric environments
• Mesh geometries/resolution
• Surface treatments
• Microphysics parameterizations
• Turbulence parameterizations
• Cloud initializations approaches

• As with the real atmosphere, most simulated supercells do
not produce long-track EF5 tornadoes



Where we’ve been Where we are Where we’re going Closing remarks

The scientific approach

• CM1 Cloud model (written by George Bryan at NCAR)
chosen as model due to its ability to scale well to
massively parallel architectures

• Getting the “storm we want” to form proved difficult.
Experimented with different:

• Atmospheric environments
• Mesh geometries/resolution
• Surface treatments
• Microphysics parameterizations
• Turbulence parameterizations
• Cloud initializations approaches

• As with the real atmosphere, most simulated supercells do
not produce long-track EF5 tornadoes



Where we’ve been Where we are Where we’re going Closing remarks

The computational challenge

• CM1 “out of the box” did not contain an I/O option
appropriate for the scale of our problem, nor a pathway to
doing full-scale visualization

• Much time and effort was put into creating an I/O and
visualization framework for a “Blue Waters sized” problem

• Wrote HDF5 output code for CM1 and a VisIt plugin to
operate on the model output format



Where we’ve been Where we are Where we’re going Closing remarks

The computational challenge

• CM1 “out of the box” did not contain an I/O option
appropriate for the scale of our problem, nor a pathway to
doing full-scale visualization

• Much time and effort was put into creating an I/O and
visualization framework for a “Blue Waters sized” problem

• Wrote HDF5 output code for CM1 and a VisIt plugin to
operate on the model output format



Where we’ve been Where we are Where we’re going Closing remarks

The computational challenge

• CM1 “out of the box” did not contain an I/O option
appropriate for the scale of our problem, nor a pathway to
doing full-scale visualization

• Much time and effort was put into creating an I/O and
visualization framework for a “Blue Waters sized” problem

• Wrote HDF5 output code for CM1 and a VisIt plugin to
operate on the model output format



Where we’ve been Where we are Where we’re going Closing remarks

HDF5 output and interface to model data

• 3D floating point arrays written on a per-node basis using
serial HDF5 and buffering to memory before writing to disk

• C API created to interface with native CM1 HDF5 output,
allows easy conversion to other formats (e.g., netCDF)

• VisIt plugin flexible enough to operate on full domain or any
subset, and does its own domain decomposition unrelated
to file geometry

• Domain-wide 2D floating point arrays of selected fields
written utilizing pHDF5

• 2D data is easy to visualize quickly and tells much of the
storm’s story without necessitating a full 3D visualization
session



Where we’ve been Where we are Where we’re going Closing remarks

HDF5 output and interface to model data

• 3D floating point arrays written on a per-node basis using
serial HDF5 and buffering to memory before writing to disk

• C API created to interface with native CM1 HDF5 output,
allows easy conversion to other formats (e.g., netCDF)

• VisIt plugin flexible enough to operate on full domain or any
subset, and does its own domain decomposition unrelated
to file geometry

• Domain-wide 2D floating point arrays of selected fields
written utilizing pHDF5

• 2D data is easy to visualize quickly and tells much of the
storm’s story without necessitating a full 3D visualization
session



Where we’ve been Where we are Where we’re going Closing remarks

Success. . . or not?

• End of PRAC with time running out, a simulation produces
a long-track EF5 (using 625 nodes, 10,000 cores)

• U of Illinois proposal written/granted to further this work
• An issue with the environmental conditions in EF5

simulation identified, potentially nullifying results
• Reproducing this run with fixed environment is successful



Where we’ve been Where we are Where we’re going Closing remarks

Success. . . or not?

• End of PRAC with time running out, a simulation produces
a long-track EF5 (using 625 nodes, 10,000 cores)

• U of Illinois proposal written/granted to further this work
• An issue with the environmental conditions in EF5

simulation identified, potentially nullifying results
• Reproducing this run with fixed environment is successful



Where we’ve been Where we are Where we’re going Closing remarks

The May 24, 2011 El Reno, OK, EF5 tornado

• On May 24, 2011, a supercell thunderstorm produced a
long-track (65 mile long path) EF5 (peak winds estimated
to exceed 210 mph) tornado outside Oklahoma City

• Our successful simulation used as its environment the
conditions surrounding the El Reno supercell

• Simulated tornado is on the ground for over 65 miles, and
produces surface winds exceeding 300 mph

• Winds this strong have been observed by Doppler radar,
but our tornado is strong even for a “typical” EF5

• First simulation was free slip (no friction) which may
contribute to these unusually strong winds

• Run with friction being analyzed; still produces EF5 tornado



Where we’ve been Where we are Where we’re going Closing remarks

The May 24, 2011 El Reno, OK, EF5 tornado

• On May 24, 2011, a supercell thunderstorm produced a
long-track (65 mile long path) EF5 (peak winds estimated
to exceed 210 mph) tornado outside Oklahoma City

• Our successful simulation used as its environment the
conditions surrounding the El Reno supercell

• Simulated tornado is on the ground for over 65 miles, and
produces surface winds exceeding 300 mph

• Winds this strong have been observed by Doppler radar,
but our tornado is strong even for a “typical” EF5

• First simulation was free slip (no friction) which may
contribute to these unusually strong winds

• Run with friction being analyzed; still produces EF5 tornado



Where we’ve been Where we are Where we’re going Closing remarks

The May 24, 2011 El Reno, OK, EF5 tornado

• On May 24, 2011, a supercell thunderstorm produced a
long-track (65 mile long path) EF5 (peak winds estimated
to exceed 210 mph) tornado outside Oklahoma City

• Our successful simulation used as its environment the
conditions surrounding the El Reno supercell

• Simulated tornado is on the ground for over 65 miles, and
produces surface winds exceeding 300 mph

• Winds this strong have been observed by Doppler radar,
but our tornado is strong even for a “typical” EF5

• First simulation was free slip (no friction) which may
contribute to these unusually strong winds

• Run with friction being analyzed; still produces EF5 tornado



Where we’ve been Where we are Where we’re going Closing remarks

The May 24, 2011 El Reno, OK, EF5 tornado

• On May 24, 2011, a supercell thunderstorm produced a
long-track (65 mile long path) EF5 (peak winds estimated
to exceed 210 mph) tornado outside Oklahoma City

• Our successful simulation used as its environment the
conditions surrounding the El Reno supercell

• Simulated tornado is on the ground for over 65 miles, and
produces surface winds exceeding 300 mph

• Winds this strong have been observed by Doppler radar,
but our tornado is strong even for a “typical” EF5

• First simulation was free slip (no friction) which may
contribute to these unusually strong winds

• Run with friction being analyzed; still produces EF5 tornado



Where we’ve been Where we are Where we’re going Closing remarks

Visualizing the storm

• Following the successful simulation, we went back from
restart files and saved data in 2 second intervals for
visualization and analysis

• This approach has been found to be practical, since the
vast majority of our simulations do not produce the storms
we wish to explore

• I/O load was high and did increase wallclock time but not
inordinately

• Volume rendering (VisIt raycasting) was used to visualize
the cloud and rain fields, as well as the vorticity fields



Where we’ve been Where we are Where we’re going Closing remarks

Visualizing the storm

• Following the successful simulation, we went back from
restart files and saved data in 2 second intervals for
visualization and analysis

• This approach has been found to be practical, since the
vast majority of our simulations do not produce the storms
we wish to explore

• I/O load was high and did increase wallclock time but not
inordinately

• Volume rendering (VisIt raycasting) was used to visualize
the cloud and rain fields, as well as the vorticity fields



Where we’ve been Where we are Where we’re going Closing remarks

Far view of cloud field



Where we’ve been Where we are Where we’re going Closing remarks

Far view of cloud field



Where we’ve been Where we are Where we’re going Closing remarks

Far view of cloud field



Where we’ve been Where we are Where we’re going Closing remarks

Near view of cloud/rain fields



Where we’ve been Where we are Where we’re going Closing remarks

Near view of cloud/rain fields



Where we’ve been Where we are Where we’re going Closing remarks

Near view of cloud/rain fields



Where we’ve been Where we are Where we’re going Closing remarks

Near view of vorticity field



Where we’ve been Where we are Where we’re going Closing remarks

Issues with VisIt raycasting

• In order to achieve high quality imagery without artifacts,
the “number of samples per ray” must be increased to
2000 or more

• Executing VisIt in parallel on Blue Waters with this
configuration will result in the job failing

• Memory utilization skyrockets with more samples per ray,
and this is not alleviated by throwing more cores at the
problem

• Only way to consistently achieve high quality raycasting
was to run one (serial) VisIt engine per shared-memory
node (leaving all other cores idling)

• Parallelization was therefore done in time, running dozens
of instances concurrently



Where we’ve been Where we are Where we’re going Closing remarks

Issues with VisIt raycasting

• In order to achieve high quality imagery without artifacts,
the “number of samples per ray” must be increased to
2000 or more

• Executing VisIt in parallel on Blue Waters with this
configuration will result in the job failing

• Memory utilization skyrockets with more samples per ray,
and this is not alleviated by throwing more cores at the
problem

• Only way to consistently achieve high quality raycasting
was to run one (serial) VisIt engine per shared-memory
node (leaving all other cores idling)

• Parallelization was therefore done in time, running dozens
of instances concurrently



Where we’ve been Where we are Where we’re going Closing remarks

Issues with VisIt raycasting

• In order to achieve high quality imagery without artifacts,
the “number of samples per ray” must be increased to
2000 or more

• Executing VisIt in parallel on Blue Waters with this
configuration will result in the job failing

• Memory utilization skyrockets with more samples per ray,
and this is not alleviated by throwing more cores at the
problem

• Only way to consistently achieve high quality raycasting
was to run one (serial) VisIt engine per shared-memory
node (leaving all other cores idling)

• Parallelization was therefore done in time, running dozens
of instances concurrently



Where we’ve been Where we are Where we’re going Closing remarks

Issues with VisIt raycasting

• Each 1920x1080 frame took roughly 20-25 minutes to
render, utilizing about 30 GB of memory

• Automation was achieved using the VisIt python interface
• Master python script created a bunch of python scripts,

each of which was executed using
visit -nowin -cli -s [scriptXXX.py]

• Shell script fired off 90 jobs, each of which rendered 40
frames

• Due to the way VisIt works, each job stays attached to the
login node from which the job is executed. Many files are
opened; ran into ulimit -n issues (too many files open)

• End result: Took less than 24 wallclock hours to render
3600 frames at 1080p (producing 2m30s of video at 24 fps)



Where we’ve been Where we are Where we’re going Closing remarks

Issues with VisIt raycasting

• Each 1920x1080 frame took roughly 20-25 minutes to
render, utilizing about 30 GB of memory

• Automation was achieved using the VisIt python interface
• Master python script created a bunch of python scripts,

each of which was executed using
visit -nowin -cli -s [scriptXXX.py]

• Shell script fired off 90 jobs, each of which rendered 40
frames

• Due to the way VisIt works, each job stays attached to the
login node from which the job is executed. Many files are
opened; ran into ulimit -n issues (too many files open)

• End result: Took less than 24 wallclock hours to render
3600 frames at 1080p (producing 2m30s of video at 24 fps)



Where we’ve been Where we are Where we’re going Closing remarks

Animations

• Movies can be found at http://orf5.com/bw2014

http://orf5.com/bw2014


Where we’ve been Where we are Where we’re going Closing remarks

More simulations using May 12 environment

• Existing simulation is exciting but:
• Simulation is free slip (no friction)
• Rain gets caught in tornado due to lack of hydrometeor

centrifuging

• Adding friction is straightforward; however simulation is
extremely sensitive to initial conditions and going back to
t=0 will not work

• Use of isotropic grid (which seems important) limits vertical
resolution near ground, complicating adding surface friction



Where we’ve been Where we are Where we’re going Closing remarks

More simulations using May 12 environment

• Existing simulation is exciting but:
• Simulation is free slip (no friction)
• Rain gets caught in tornado due to lack of hydrometeor

centrifuging

• Adding friction is straightforward; however simulation is
extremely sensitive to initial conditions and going back to
t=0 will not work

• Use of isotropic grid (which seems important) limits vertical
resolution near ground, complicating adding surface friction



Where we’ve been Where we are Where we’re going Closing remarks

More simulations using May 12 environment

• Existing simulation is exciting but:
• Simulation is free slip (no friction)
• Rain gets caught in tornado due to lack of hydrometeor

centrifuging

• Adding friction is straightforward; however simulation is
extremely sensitive to initial conditions and going back to
t=0 will not work

• Use of isotropic grid (which seems important) limits vertical
resolution near ground, complicating adding surface friction



Where we’ve been Where we are Where we’re going Closing remarks

More simulations using May 12 environment

• Have already achieved some success running from
restarts and having the storm move over a region of
increasingly rough surface, using same mesh

• Using a different mesh but running from existing restarts
will require some work

• Will explore using meshes beyond what CM1 “allows”
• We need to increase vertical resolution near the surface in

order properly include the effects of surface roughness
while preserving a realistic near-surface flow field



Where we’ve been Where we are Where we’re going Closing remarks

More simulations using May 12 environment

• Have already achieved some success running from
restarts and having the storm move over a region of
increasingly rough surface, using same mesh

• Using a different mesh but running from existing restarts
will require some work

• Will explore using meshes beyond what CM1 “allows”
• We need to increase vertical resolution near the surface in

order properly include the effects of surface roughness
while preserving a realistic near-surface flow field



Where we’ve been Where we are Where we’re going Closing remarks

Long view

• Existing simulation is on the low side of desired resolution;
doubling resolution will require around 16x more SU’s per
simulation

• Achieving the most useful science results will require a
suite of simulations (one simulation is not enough; wish to
avoid the “single hero simulation” problem)

• Looking forward to moving beyond the technical challenges
and moving directly into achieving meaningful science
results



Where we’ve been Where we are Where we’re going Closing remarks

Long view

• Existing simulation is on the low side of desired resolution;
doubling resolution will require around 16x more SU’s per
simulation

• Achieving the most useful science results will require a
suite of simulations (one simulation is not enough; wish to
avoid the “single hero simulation” problem)

• Looking forward to moving beyond the technical challenges
and moving directly into achieving meaningful science
results



Where we’ve been Where we are Where we’re going Closing remarks

Long view

• Existing simulation is on the low side of desired resolution;
doubling resolution will require around 16x more SU’s per
simulation

• Achieving the most useful science results will require a
suite of simulations (one simulation is not enough; wish to
avoid the “single hero simulation” problem)

• Looking forward to moving beyond the technical challenges
and moving directly into achieving meaningful science
results



Where we’ve been Where we are Where we’re going Closing remarks

Closing remarks

• A breakthrough simulation has been achieved - to the best
of our knowledge, this is the first time a supercell
producing long-track EF5 has been simulated

• The Blue Waters environment was crucial to the
development, execution, data management, visualization,
and post-processing (“end-to-end”)

• Existing tools are solid and now the real fun begins


	Where we've been
	The scientific problem
	The scientific / computational approach
	A successful simulation

	Where we are
	May 24, 2011 EF5 Tornado
	Visualization of the EF5 producing supercell
	Issues with VisIt raycasting
	Animations

	Where we're going
	Higher resolution, friction, precipitation centrifuging

	Closing remarks

