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Understanding the most devastating tornadoes

• The strongest, longest-lived tornadoes (long-track EF5)
are the least common, but produce the most devastating
damage and significant loss of life

• There is a lack of published research involving the
simulation of such tornadoes embedded within their parent
storm

• We aim to simulate supercells where the entire life cycle
(genesis, maintenance, decay) of many long-track EF5
tornadoes occurs

• This is the first step in providing better forecasts of such
events
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The scientific approach

• CM1 Cloud model (written by George Bryan at NCAR)
chosen as model due to its ability to scale well to
massively parallel architectures

• Getting the “storm we want” to form proved difficult.

Experimented with different:
• Atmospheric environments
• Mesh geometries/resolution
• Surface treatments
• Microphysics parameterizations
• Turbulence parameterizations
• Cloud initializations approaches

• As with the real atmosphere, most simulated supercells do
not produce long-track EF5 tornadoes
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The computational challenge

• CM1 “out of the box” did not contain an I/O option
appropriate for the scale of our problem, nor a pathway to
doing full-scale visualization

• Much time and effort was put into creating an I/O and
visualization framework for a “Blue Waters sized” problem

• Wrote HDF5 output code for CM1 and a VisIt plugin to
operate on the model output format
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HDF5 output and interface to model data

• 3D floating point arrays written on a per-node basis using
serial HDF5 and buffering to memory before writing to disk

• C API created to interface with native CM1 HDF5 output,
allows easy conversion to other formats (e.g., netCDF)

• VisIt plugin flexible enough to operate on full domain or any
subset, and does its own domain decomposition unrelated
to file geometry

• Domain-wide 2D floating point arrays of selected fields
written utilizing pHDF5

• 2D data is easy to visualize quickly and tells much of the
storm’s story without necessitating a full 3D visualization
session
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Success. . . or not?

• End of PRAC with time running out, a simulation produces
a long-track EF5 (using 625 nodes, 10,000 cores)

• U of Illinois proposal written/granted to further this work
• An issue with the environmental conditions in EF5

simulation identified, potentially nullifying results
• Reproducing this run with fixed environment is successful
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The May 24, 2011 El Reno, OK, EF5 tornado

• On May 24, 2011, a supercell thunderstorm produced a
long-track (65 mile long path) EF5 (peak winds estimated
to exceed 210 mph) tornado outside Oklahoma City

• Our successful simulation used as its environment the
conditions surrounding the El Reno supercell

• Simulated tornado is on the ground for over 65 miles, and
produces surface winds exceeding 300 mph

• Winds this strong have been observed by Doppler radar,
but our tornado is strong even for a “typical” EF5

• First simulation was free slip (no friction) which may
contribute to these unusually strong winds

• Run with friction being analyzed; still produces EF5 tornado
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Visualizing the storm

• Following the successful simulation, we went back from
restart files and saved data in 2 second intervals for
visualization and analysis

• This approach has been found to be practical, since the
vast majority of our simulations do not produce the storms
we wish to explore

• I/O load was high and did increase wallclock time but not
inordinately

• Volume rendering (VisIt raycasting) was used to visualize
the cloud and rain fields, as well as the vorticity fields
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Far view of cloud field
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Near view of cloud/rain fields
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Near view of cloud/rain fields
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Near view of vorticity field
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Issues with VisIt raycasting

• In order to achieve high quality imagery without artifacts,
the “number of samples per ray” must be increased to
2000 or more

• Executing VisIt in parallel on Blue Waters with this
configuration will result in the job failing

• Memory utilization skyrockets with more samples per ray,
and this is not alleviated by throwing more cores at the
problem

• Only way to consistently achieve high quality raycasting
was to run one (serial) VisIt engine per shared-memory
node (leaving all other cores idling)

• Parallelization was therefore done in time, running dozens
of instances concurrently
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Issues with VisIt raycasting

• Each 1920x1080 frame took roughly 20-25 minutes to
render, utilizing about 30 GB of memory

• Automation was achieved using the VisIt python interface
• Master python script created a bunch of python scripts,

each of which was executed using
visit -nowin -cli -s [scriptXXX.py]

• Shell script fired off 90 jobs, each of which rendered 40
frames

• Due to the way VisIt works, each job stays attached to the
login node from which the job is executed. Many files are
opened; ran into ulimit -n issues (too many files open)

• End result: Took less than 24 wallclock hours to render
3600 frames at 1080p (producing 2m30s of video at 24 fps)
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Animations

• Movies can be found at http://orf5.com/bw2014

http://orf5.com/bw2014
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More simulations using May 12 environment

• Existing simulation is exciting but:
• Simulation is free slip (no friction)
• Rain gets caught in tornado due to lack of hydrometeor

centrifuging

• Adding friction is straightforward; however simulation is
extremely sensitive to initial conditions and going back to
t=0 will not work

• Use of isotropic grid (which seems important) limits vertical
resolution near ground, complicating adding surface friction
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More simulations using May 12 environment

• Have already achieved some success running from
restarts and having the storm move over a region of
increasingly rough surface, using same mesh

• Using a different mesh but running from existing restarts
will require some work

• Will explore using meshes beyond what CM1 “allows”
• We need to increase vertical resolution near the surface in

order properly include the effects of surface roughness
while preserving a realistic near-surface flow field
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Long view

• Existing simulation is on the low side of desired resolution;
doubling resolution will require around 16x more SU’s per
simulation

• Achieving the most useful science results will require a
suite of simulations (one simulation is not enough; wish to
avoid the “single hero simulation” problem)

• Looking forward to moving beyond the technical challenges
and moving directly into achieving meaningful science
results
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Closing remarks

• A breakthrough simulation has been achieved - to the best
of our knowledge, this is the first time a supercell
producing long-track EF5 has been simulated

• The Blue Waters environment was crucial to the
development, execution, data management, visualization,
and post-processing (“end-to-end”)

• Existing tools are solid and now the real fun begins
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